Spring in 15 minutes

by David Kiss (http://kaviddiss.com)

http://kaviddiss.com/

Table of Contents

Overview

Prerequisites

Step #1 - Create your first project

Step #2 - Create static content

Step #3 - Create our data model

Step #4 - Manipulate the data
Using Spring Data JPA
Creating a RestController
Creating Rest Resources

Step #5 - Securing the application

Welcome to the Spring in 15 Minutes tutorial

This step-by-step tutorial was created to help you get started with Spring and take you through
creating a sample blog application using Spring framework v4, Spring Boot, Spring Data and
Spring Security frameworks.

You are welcome to share, transmit or include this tutorial in training packages or resources
(free or paid), provided you keep it intact as a complete document. No permission from the
author is required.

If you find this document useful, you'll find more Spring tutorials at
http://kaviddiss.com/learn-spring/.

In case you have a question on Spring, found an error in the tutorial, or just want to compliment
on the nice fonts in this document, leave a message at http://kaviddiss.com/contact/.

Prerequisites

e Previous experience with Java

e An IDE to editing Java source code. | personally prefer using IntelliJ
(https://www.jetbrains.com/idea/download), but feel free to use Eclipse
(http://www.eclipse.org/downloads/), Netbeans (https://netbeans.org/downloads/) or
anything else you feel comfortable with.

e JDK installed and configured for the project in your IDE, preferably v1.8, the latest,
version

http://kaviddiss.com/learn-spring/
http://kaviddiss.com/contact/
https://www.jetbrains.com/idea/download
http://www.eclipse.org/downloads/
https://netbeans.org/downloads/

Step #1 - Create your first project

In this section we’'ll create a very basic Java project that we’ll use for creating the blog
application.

To get started, navigate to the Spring Initializr webpage at http://start.spring.io in your favourite
browser. On this page you’ll be able to generate a basic Spring framework / Spring Boot based
project.

What is Spring Boot?

In case you’re not familiar with Spring Boot, it's one of the latest additions to the many
existing Spring frameworks. It was inspired by Dropwizard (http://www.dropwizard.io/)
and it’s main goal is to simplify working with Spring and supporting development of
microservices using Spring.

SPRING INITIALIZR

Generate a weenroea « With Spring Boot | 134

Project Metadata Dependencies

Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.kaviddiss

Artifact Selected Dependencies

Generate Project alt + &

Don't know what to look for? Want more options? Switch to the full version

start.spring.io is powered by and

On the Spring Initializr webpage select Maven Project and the latest stable Spring Boot version
(currently 1.3.5).

What is Maven?

Apache Maven (http://maven.apache.org/) is probably the most commonly used
open-source build and dependency management tool for Java. It is similar to NPM in
Node.js or RubyGems in Ruby.

http://start.spring.io/
http://projects.spring.io/spring-boot/
http://www.dropwizard.io/
http://maven.apache.org/

The Group field allows grouping build artifacts together. For example, if your company’s website

is http://mycompany.com, you'd use com.mycompany as the Group for all the java projects
within the company.

The Artifact field along with the Group field allows to uniquely identify a Java project in Maven.
It's generally a good idea to set it to a meaningful value that describes your project.

In the Dependencies field select these options:
e Web: allows us to create web applications
e DevTools: a library used locally in development mode that can automatically restart your
Spring web application whenever files in the classpath change (in IntelliJ it can be
triggered by clicking Build / Make Project menu item, in Eclipse by saving a modified file)
e Actuator: a library that provides useful information (monitoring, health, etc.) on the
running Spring application

At this point you can click the Generate Project button that will generate a zip file that you'll
need to download and extract on your computer.

I F M= quick-blog = el
“ Home Share View 9
= Cut "

7 New item ~ Y L Ope BH select all
P =Y Easy access ~ =4 Edit Select none
Delete Rename MNew Properties
¥ folder i

1) History UD Invert selection

(-,l - 4 v ThisPC » Acer(C:) » work + quick-blog » v & Search quick-blog =]
MName Date modified Type Size

JTWR 2016-0 o7 File folder

sre 2016-0

File folder

L | mvnw 2016-0 File TKB
[E] mvnw.cmd 2016-0 Windows Comma... 5KB
7 pormxml 2016-0 XML File 2KB

5 items

Starting from the bottom,

e pom.xml: is the Maven project descriptor file where you can configure the project’s
dependencies and build steps

® nvnw OF mvnw.cnd. if you don’t have Maven installed yet, running these commands will
install it locally
src: folder containing all source files needed to build this project

e .nvn: folder needed for mvnw command

e -/.m2/repository: this folder is not inside the project folder, rather it lives on it's own and
includes a local cache of all the artifacts used as a dependency for your local Java
projects

Now in the command line run: mvnw spring-boot:run

o) Command Prompt - mvnw spring-bootrrun

:\work\quick—hlog)munu spring—hoot:run

. wrapp istssapache—maven—3.3.3-bin*3opbhjpbrglogp?kZabt]ljcpugprapache-maven—3.3.3-hbi
\PluralSlght\ m2\ul-appel-\d1f‘t sapache-maven-3.3.3-bhin~3ophjpbrglégp?kZabtljcpugp
projects...

Downloading: http /repo ..maven .apache .orgs/naven sorgs/springframework/boot/spring—hoot—starter-parents1.3.3 .RELEASE/spri
g—hoot—starter—parent—1.3.3.RELEASE. pom
Downloaded: https://repo.maven.apache.orgs/maven2sorgsspringframevorksboot/spring—hoot—-starter—parents1.3.3.RELEASE/sprin
lg—hoot—-starter—parent—1.3.3.RELEASE.pom (7 KB at 1.2 KBrszec)>
nounloadlng- https://repo.maven.apache .orgs/maven2/org/springframework hoot/spring—hoot—dependenciess1.3.3 .RELEASE/spring
hoot—dependencies—1.3.3.RELEASE. pom
Downloaded: https://repo.maven.apache .org/mavensorgsspringframework-boot/spring—hoot-dependencies~1.3.3.RELEASE/spring—|
hoot—dependencies—1.3.3.RELEASE.pom (73 KB at 16.5 KBrsec)
Downloading: https://repo.maven.apache.org/maven2/org/springframework/spring—framewvork-boms4.2.5 RELEASE/spring—framewor|
(k—bhom—4.2.5 _RELEASE.pom
Downloaded: https://repo.maven.apache.org/mavensorgsspringframewvork/spring—framework-homs4.2.5 . RELEASE/spring—framework
hom—4.2 .5 . RELEASE.pom (5 KB at 1.2 KB/sec?
Downloading: https://repo.maven.apache.org/maven2/orgs/springframeworksdatasspring—data—releasetrainsGosling—SR4/spring—d
ta-releasetrain—Gosling—5R4.pom
Downloaded: https://repo.mauen.apache.oPg/mauen2/nrg/springfPameuoPk/data/spring—data—releasetrain/Gnsling—SR4/spPing—da
a— Pelea“etl in—Gosling—S8R4.pom (5 KB at 1.8 KB-sec)>

https://repo.maven.apache .orgs/maven2/org/springframeworksdatasbuild/spring—data—build-1.7.4.RELEASE/spring-|
ata—build-1.7.4.RELEASE. pom
Downloaded: https://repo.maven.apache . org/mavensorgsspringframeworkrsdatarsbuild/spring—data-build-s1.7.4.RELEASE/spring—d
ta-build-1.7.4.RELEASE.pom (3 KB at 1.1 KBrsec)>
Downloading: https://repo.maven.apache.orgs/maven2/org/springframeworksintegrationsspring-integration-hom-s4.2.5.RELEASE s
pring—integration—bhom—4.2 .5 RELEASE.pom
Downloaded: https://repo.maven.apache .org/mavensorgsspringframework/integration/spring—integration—hboms4.2_.5_ RELEASE~=y
ring—integration—bom—-4.2.5.RELEASE.pom (2 KB at 18.% KB-sec)
Downloading: https://repo.maven.apache.org/maven2/org/springframework/security/spring-security-hom-4.8.3 _ RELEASE/spring-|
ecurity—hom—4.8.3.RELEASE. pom
Downloaded: https://repo.maven.apache.org/maven2sorgsspringframevork/security/spring—security-hom-s4.6.3 . RELEASE/spring—=s
ecurity—hbom—4.8.3 _RELEASE.pom (5 KB at 1.4 KBrsec>
Downloading: https:/ repo.maven.apache.orgsmaven org-sapache/mavensplugins/maven—help—plugin-2.2/maven—help—plugin-2.2.y|

m

Downloaded: https:/-/repo.maven.apache.orgs/maven2/orgsapache maven-plugins maven—help-plugin-2.2/maven—help—plugin—-2.2.po
{9 KB at 4.4 KBrsec>

Downloading: https://repo.maven.apache.org-smaven/orgsapache/maven-splugins/maven—help—plugins2.2/maven—help-plugin-2.2.j

»

This command will run the empty Spring Boot application and when you execute the command
for the first time, it will also download Maven and the project’s dependencies (into the
~/.m2/repository folder).

If you open your browser and go to http://localhost:8080 now, you should see something like
this:

http://localhost:8080/

& http://localhost:B080/

. (i) | localhest:2020 o ”QSEDrch . ﬁ E ¥ # 9 wes|

Whitelabel Error Page

This application has no explicit mapping for /error, so you are seeing this as a fallback.

Tue May 10 22:48:08 EDT 2016
There was an unexpected error (tvpe=Not Found, status=404).
No message available

It's not the most beautiful welcome page, right? We're faced with this HTTP 404 (Not Found)
error message since our application doesn’t have any web pages or REST services configured
yet. At least we know the application is running!

Now let’s open the project in Intellid (or your favourite IDE). Start Intellid and click Open (or File /
Open...menu, if you have another project already open).

IntelliJ IDEA

Version 201611

¥ Create Mew Project
L d Import Project
3 Open

¥ Check out from Version Control =

Configure v GetHelp »

Then select the pom. xm1 file in your project and click OK:

ﬁ [B o :i'- b4 55 Hide path
| Choworkhquick-bloghpom.xml |§
[v [quick-blog -

F [.idea

» 3 .mvn
s

b [target

E AW

E mvnw.crmd
porm.ml

E guick-bleg.iml

Dra-g-r and drop a file into the space above to guickly locate it in the tree

I [concel | [Hep |

You should see something like this in IntelliJ:

file Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

=] I Structure

3 2 Favorites

v [Eaquick-blog C:workiquick-blog
» [idea
=
v Osc
v [main
v Bjava

| 3
»
[generated-test-sources
>
>
»

[l mvnw.cmd

HO ¢4 %0 QAR &> B &5 $E

? Q

Eaw

v [comkaviddiss
(€ & QuickBlogApplication

v [5 resources

[static

[5] templates

[application.properties
PP prop

v DOltest
v Bjava

¥ [com kaviddiss
(€ & QuickBlogApplicationTests

v Etarget
[classes
[generated-sources

3 maven-status
[surefire-reports
[test-classes

mvnw

M pomaxml
» il Bxternal Libraries

spafoid Uael 5

PING JUY 2%

[Terminal

@ & TODO

% Event Log

we wa b & [(G4orssm

Step #2 - Create static content

Now we have the project created, it’s time to add some static content to the web application.

Let’s fix the HTTP 404 issue by returning a hard-coded “My Quick Blog” when the user
navigates to http://localhost:8080/ in the browser.

To be able to do that, we’'ll create below MainController class in the com.kaviddiss.web
package:

package com.kaviddiss.web;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.ResponseBody;

@Controller
public class MainController {
@RequestMapping ("/™)
@ResponseBody
public String index() {
return "My Quick Blog";
}

The MainController is annotated with the econtro11er annotation which tells Spring that this
class is a Spring component (Spring Bean) and it implements the Controller from the MVC
(Model-View-Controller) pattern.

If you're wondering what that means, let’s take a look at the index () method.

Public methods marked with ¢requestmapping inside controller classes will map to a context
path (for example: /product/12345). In our case, the index () method is mapped to the root path
(“/"). This maps to the http://localhost:8080/ url when running the application locally on the 8080
port.

You'll notice that all what the index () method does is returning the text “My Quick Blog”. Since
the method is annotated with e¢responsenody, Spring will use the result of the index () method as
the body of the HTTP response it returns.

Rebuild the project or restart the web application for these changes to take effect:

http://localhost:8080/
http://localhost:8080/

& http:/flocalhost:2030/

’l_, localhost: 2020 . CQ Search | 1:{ E ¥+ #H 9 ===

My Quick Blog

Step #3 - Create dynamic content

Let’'s make the previous page a little nicer by using some HTML code. In addition to that, we’ll
make it dynamic: it will take a name request param which will be included in the HTML response.

In order to generate a dynamic HTML page, we’ll use a template engine called Thymeleaf to
render the content.

What is Thymeleaf?
Thymeleaf (http://www.thymeleaf.org/) is an open-source and Java-based template
engine that is fully integrated with Spring and aims to be a substitute for JSP.

The first step is to add the Thymeleaf dependencies to the project. In the pom.xml file add the
thymeleaf dependency under project/dependencies (around line 39):

<dependency>
<groupld>org.springframework.boot</groupId>

http://www.thymeleaf.org/

<artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

Click the Enable Auto Import link in Intellid, in case that notification appears in the top right
corner. This will configure Intellid to automatically import any new dependencies we add
manually to the pom. xm1.

Create an index.html file under src/main/resources/templates With below content:
<html>
<body>

<h1>My Quick Blog</hl>

<p>

Welcome to my blog, !

</p>
</body>
</html>

Notice the th:text="5{name}" section in the file which instructs Thymeleaf to set the content of
the tag to the name parameter passed to Thymeleaf.

We’'ll configure Spring to return this HTML code when users navigate to the root context path by
updating the index () method in the MainController class:

@RequestMapping ("/")

public ModelAndView index (@GRequestParam("name") String name) {
Map<String, Object> model = new HashMap<>();
model.put ("name", name);
return new ModelAndView ("/index", model) ;

First, the eresponserody annotation got removed, then the method now takes a request
parameter called name (see the erequestpParam annotation).

Also, instead of String, now we return a ModelAndView object which allows us to configure the
name of the view to be returned "/index" and pass in various parameters to the view (for
example: name) that can be referenced in the HTML template to make the content dynamic.

Remember, the "/index" refers to the view used for rendering and View is the V in the MVC
pattern we discussed earlier.

What is a View?
View is a representation of the data we want to display to the user. In this case, a view is
an HTML file and view name is the filename of the view (without the .html extension)

Earlier in the tutorial we placed the index.html file under the src/main/resources/templates
folder. If you’re not familiar with Maven, the src/main/resources folder is used for resource files
/ static content that will be copied to the target/classes folder along with the Java class files
during the build process and therefore will be available on the classpath at runtime.

Now the src/main/resources/templates is folder used by Spring for storing template files (for
rendering HTML, as an example). When the index () method returns “/index”, Spring will look for
a template file under the src/main/resources/templates folder with the relative path of
“/index.html” (the .html is the default postfix for view names) that would translate to
src/main/resources/templates/index.html, Which we created earlier.

Once Spring finds this index.nhtmi file, it will render it using Thymeleaf, the templating engine.

To ensure that changes to HTML files take effect after rebuilding the project without any
restarts,, we need to turn off the Thymeleaf caching by updating the
src/main/resources/application.properties file by adding below line:

spring. thymeleaf.cache=false

If you followed these steps, let’s rebuild the project to trigger the auto-reload and go to
http://localhost:8080/ in the browser to see the magic happen:

http://localhost:8080/

' http://lacalhost:B080/

& | @ | localhost:3080 @ || Q searcn I wBa A ®™| =

My Quick Blog

Welcome to my blog!

After taking a short glimpse into rendering Ul using Spring Boot and Thymeleaf now let’s take a
look into working with databases.

Step #4 - Create our data model

In the previous steps we created a controller and a simple HTML view. In this step we're going
to create our data Model, the M in the MVC pattern.

Now let’s create a Post entity!

What is an entity?

An entity is a Java object that is mapped to a database table and is used to store and
retrieve data from the DB using an ORM (Object Relational Mapping) tool, like Hibernate
(http://hibernate.org).

First, let’s include the spring-boot-starter-data-jpa and h2 dependencies in the pom.xml file:
<!-- DB access —-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
</dependency>

What is Spring Data JPA?
Spring Data JPA is a Spring framework that makes it very easy to work with SQL
databases using the JPA (Java Persistence Api) standard

What is H2?
H2 is a Java-based SQL database that can be used in both embedded and standalone
scenarios and it's commonly used when developing/testing web applications locally.

Next, let’s create the com.xaviddiss.domain package under src/main/java and create the post
class within that package:

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;

import java.io.Serializable;

@Entity

public class Post {
@Id
@GeneratedValue

private Long id;

http://hibernate.org/

private String title;
private String body;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getBody () {
return body;

}

public void setBody (String body) {
this.body = body;
}

If the spring-boot-starter-data-jpa dependency is added to the project, Spring Boot will
automatically try to initialize the Spring Data JPA framework. Spring Data JPA then will scan the
classpath for classes marked with the eent ity annotation (ie: the Post class) and will map them
to their corresponding DB tables including the columns defined by the entity fields. By default, it
will re-create the tables every time the application starts up.

Now let’s look at the fields of the Post entity:

e id - the e1a annotation on this field marks it as the primary key for this entity. It also has
the eceneratedvalue annotation which means the primary key will be automatically
generated and will be sequentially increased every time a new entity is created in the DB
title - this is a String field / varchar column
body - this is a String field / varchar column

Since the n2 dependency is added to the classpath, Spring will automatically create a H2
datasource that will be responsible for creating connections to the H2 database when the
application tries to store/retrieve data to/from the DB. The default JDBC url for the H2 database
iS jdbc:h2 :mem: testdb, the driver class name is org.h2.Driver, the username is sa and there’s
no password. In case you’re not familiar with JDBC, the JDBC url, driver class hame, username
and password are the most important and most commonly used DB connection details.

Now restart the application and go to http://localhost:8080/h2-console:

. HZ Console

rd "\
|¢ RO localhost:2080/h2-console/login jspljsession v | & HQ Search ‘ ﬁ' | E 4+ # B e =

|English v| Preferences Tools Help

Saved Settings: | Generic H2 (Server) v/

Sefting Name: IGenen’c H2 (Server) 2

Driver Class: |org.h2.Driver

JDBC URL: |jdbc:h2:mern:testdb

User Name; | 55

Passwaord: I

| Connect | ‘ Test Connection ‘

http://localhost:8080/h2-console

If you click the Connect button, you should see the POST table in the left navigation bar:

. HZConsole

[= | () localhost:3080/h2-console/login.do?jsession [Q, Search ﬁ E 45 # 9 =esl

| & | @ Auto commit F0 ‘D |Maxrows:i1ﬂﬂ[] v @ 0 3 | % | Auto complete |_ErIT v @

[1 jdbchZ:memtestdn | Run ” Run Selected ” Auto complete H Clear |S{1L statement:
E PosT

] INFORMATION_SCHEMA
252 Sequences

{ih Users
(i) H2 1.4.191 (2018-01-21)

Important Commands

Displays this Help Page

Shows the Command History

Cirl+Enter |Executes the current SQL statement

Shift+Enter | Executes the SCOL statement defined by the text selection

Ctri+Space | Auto complete

Disconnects from the database

It would be nice to pre-populate the DB with some data for testing so we don’t have to create
those records manually every time the application is started up.

Actually Spring provides a few ways to do that, but for now, let’s take a look at one of the most
easiest option. Spring Boot provides a simple way to initialize a database by placing a file
named import.sql file under src/main/resources folder. During application startup time, Spring
Boot looks for that file and if it exists, it will execute its content.

With that said, let’s create that file with below content that will insert 4 Posts into the database:

insert into post (title, body) wvalues ('Lorem ipsum dolor sit amet, consectetur
adipiscing elit', 'Fusce urna nulla, fringilla lacinia euismod eget, vestibulum id
metus.');

insert into post (title, body) wvalues ('Mauris vulputate massa ac volutpat fermentum',
'Ut at mollis purus, vitae feugiat lacus.');

insert into post (title, body) values ('Morbi porttitor pharetra ex nec eleifend’,
'Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus

mus.');

insert into post (title, body) values ('Praesent iaculis sollicitudin ligula et
lacinia', 'Morbi commodo, erat sit amet lobortis molestie, nibh mi tristique ligula,
consectetur varius nisi erat in orci.');

Let’s validate the script was executed by typing SELECT * FROM POST into the H2 Console
text area and clicking the Run button:

& H2Console

.'-._-i‘. I i
(€@ localhost:2080/h2-consoleflegin.do?jsessiorn c | Q, Search | ﬁ' | E ¥+ # 9 sl

& | & | @ Auto commit %0 “p |Maxrows: 00 = | :% |Autocomplete®

ﬂ jdbch2:mem:testdo | Run ” Run Selected ” Auto complete H Clear |S{]L statement:
B POST

[INFORMATION_SCHEMA
£EE Sequences

{f Users

(i) H2 1.4.191 (2018-01-21)

SELECT * FROM POST

SELECT * FROM FOST,
ID |BODY TITLE

1 |Fusce urna nulla, fringilla lacinia evismod eget, Lorem ipsum dolor sit amet,
vestibulum id metus. consectetur adipiscing elit

Lt at maollis purus, vitae feugiat lacus. Mauris vulputate massa ac
volutpat fermentum

Cum sociis natoque penatibus et magnis dis parturient | Morbi porttitor pharetra ex nec
montes, nascetur ridiculus mus. eleifend

4 |Morbi commodo, erat sit amet lobortis molestie, nibh Praesentiaculis sollicitudin
mi tristique ligula, consectetur varius nisi eratin orci. ligula et lacinia
(4 rows, 14 ms)

Step #5 - Manipulating the data

Since we have some dummy test data already inserted into our database, we might as well
write some queries to fetch them from the DB.

Using Spring Data JPA

In this section we're going to create two REST services, one that will find a blog post by its title
and another one that will search blog posts based on a keyword in the post’s body.

The Spring Data JPA framework allows us to create interfaces that define access to the
database and it will automatically generate the db queries for the methods we declare within the
repository interfaces.

Now, let’s create a PostRepository interface under com.xaviddiss.repository:

package com.kaviddiss.repository;

import com.kaviddiss.domain.Post;
import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository
public interface PostRepository extends CrudRepository<Post, Long> {
Post findOneByTitle (String title);

List<Post> findByBodyContaining (String keyword);

This interface is annotated with the erepository annotation which tells Spring this is a Spring
component and that it's a Spring Data repository interface.

There are two methods in postrepository and they both follow a naming convention that allows
Spring Data to understand the meaning of the method names and generate their matching JPA
(and in turn SQL) queries.

The first method, findoneByTit1e (), returns a single Post entity that has a title matching the
provided parameter, and the second method, findByBodyContaining (), returns a list of posts

that include the keyword parameter in their body.

See, this is easy. We didn’t even write a single SQL query!

Here’s a list of some of the supported keywords that can be used in method names: and, or,

Equals, Between, LessThan, LessThanEqual, GreaterThan, GreaterThanEqual, After,

Before, IsNull, NotNull, Like, Containing, OrderBy, In, Not.

You may notice that the interface also extends crudrepository which comes from the Spring
Data framework and it declares many methods around common functionalities for accessing the
database: save(), findOne(), findAll(), exists(), count(), delete(), deleteAll(), etc.

Spring Data will also automatically generate JPA (and SQL) queries for methods declared in
parent interfaces that our interface extends.

What we’ll do here next is to create REST services to expose the methods in the
PostRepository class. There are multiple ways to do that. First, similar to the MainController
class we created earlier we'll create a postRestController.

Creating a RestController

In this example you’ll see how to create REST services manually and also, how to reference
other Spring components (aka Beans):

Under the com.kaviddiss.web package create the PostRestController class with below code:

package com.kaviddiss.web;

import com.kaviddiss.domain.Post;

import com.kaviddiss.repository.PostRepository;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;
import java.util.List;

@RestController
public class PostRestController {
private final PostRepository postRepository;

@Autowired
public PostRestController (PostRepository postRepository) {
this.postRepository = postRepository;

@RequestMapping (value = "/post/findByTitle")
public Post findOneByTitle (€RequestParam("title") String title) {
return postRepository.findOneByTitle (title);

@RequestMapping (value = "/post/search")
public List<Post> findByBodyContaining (€RequestParam("keyword") String keyword) {
return postRepository.findByBodyContaining (keyword) ;

@RequestMapping (value = "/post/count")
public long count () {
return postRepository.count () ;

This controller uses the ¢restcontrolier annotation instead of econtroller. It's essentially
doing the same thing, except the ¢responserody annotation is used automatically to annotate
method results as the response body.

The postRestController has a postRepository field which gets populated in the class’
constructor where the ¢rutowired annotation tells Spring to automatically inject an instance of
the postrRepository class as a constructor argument.

The following three methods are separate REST services that we can call from our browser (for
example: http://localhost:8080/post/search?keyword=us). Note how the ¢requestmapping
annotation configures the context path used for the REST service.

By default, the result of these methods are serialized into JSON objects, as you can see that in
below screenshot.

Rebuild the application (Build / Make Project menu item) to refresh the running application with
the latest code changes.

http://localhost:8080/post/search?keyword=us

o http:/flocal..h?keyword=us

| €=) (0 | localhost:8080/post/search?keyword=u EJ | ¢ [| @ Search B 4+ & O wEx| =

[{"id™:1,"cicle™:"Lorem ipsum dolor sitc amet, consectetur adipiscing e1lit”™, "body™:"Fusce
urna nulla, fringilla lacinia euismod eget, vestibulum id metus."™}, {"id":2,"title™:"Mauris
vulputate massa ac volutpat fermentum®™, "body™:"Ut at mollis purus, vitae feugiat lacus."},
{"id":3,"title™:"Morbi porttitor pharetra ex nec eleifend”, "body":"Cum sociis natogue
penatibus et magnis dis parturient montes, nascetur ridiculus mus."},
{"id":4,"citle”::"Praesent iaculis sollicitudin ligula et lacinia", "body":"Morbi commodo,
erat =it amet lobortis molestie, nibh mi tristique ligula, consectetur varius nisi erat in
orci.m™}]

Creating Rest Resources

In the previous section we looked at how to create REST services using the ¢restcontrolier
annotation. Now we take a peek at the Spring Data Rest framework that allows to expose
Spring Data repository interfaces (ie: rostRepository) as REST services.

First, add the spring-boot-starter-data-rest dependency to the pomn.xmi file under
build/dependencies (around line 50):

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

Step #2 is to replace the erepository annotation with ¢repositoryrestresource in the existing
PostRepository Class and add the ¢raram annotation to the method parameters which will set

the name of the request parameters of the new REST services:
package com.kaviddiss.repository;

import com.kaviddiss.domain.Post;

import org.springframework.data.repository.CrudRepository;

import org.springframework.data.rest.core.annotation.RepositoryRestResource;
import java.util.List;

@RepositoryRestResource (collectionResourceRel = "posts'", path = "posts")
public interface PostRepository extends CrudRepository<Post, Long> {

Post findOneByTitle (@Param("title") String title);

List<Post> findByBodyContaining (CParam("keyword") String keyword) ;

Rebuild or restart the running project for the changes to take effect.

If you have Chrome installed on your machine, install the Postman extension (offered by
www.getpostman.com) to test the new REST services:

GET hrrp:filocalhost:8080/posts Params “ Save

Body (5) me:
Pretty : : 50N =
1~k
2
ER
5 ": "Lorem ipsum dolor sit amet, consectetur adipiscing elit",
6 Fusce urna nulla, fringilla lacinia euismod eget, vestibulum id metus.”,
7 {
e

": "http://localhost:808@/posts/1"

": "http://localhost:8088/posts/1"

le": "Mauris vulputate massa ac volutpat fermentum",
Ut at mollis purus, vitae feugiat lacus.",

": "http://localhost:8@8@/posts/2”

E "http://localhost: 8080/ posts/2"

79 "+i£1a": "Marhi narttitor nharsfra sy ner alaifend”

List OprStS.' curl -X GET "http://localhost:8080/posts"

http://www.getpostman.com/

GET http:/flocalhost8080/posts/search Params “ Save

Body C
Pretty Raw Previe JSON W =
1~
i " links": {
3- "findOneByTitle": {
4 "href": "http://localhost:8888/posts/search/findOneByTitle{?title}",
"templated": true
6 ¥a
i "findByBodyContaining”: {
8 "href": "http://localhost:8@88/posts/search/findByBodyCentaining{?keyword}",
9 "templated": true
18 Is
1T~ "self": {
52, "href": "http://localhost:8088/posts/search”
13 3
14 3
15 |31

Status; 200 OK

List Of,OOSt search services: curl -X GET "http://localhost:8080/posts/search"

GET v httpi/flocalhost:8080/posts/search/findByBodyContaining?keyword=nulla Params “ Save

Body Cookies H

ISON v =

Pretty Raw

Lv||f
2 "_embedded": {
F= "posts™: [
L {

5 "title": "Lorem ipsum dolor sit amet, consectetur adipiscing elit",

6 "body": "Fusce urna nulla, fringilla lacinia euismod eget, vestibulum id metus.",
7~ "_links": {

B~ g
2] "href": "http://localhost:8880/posts/1"

1e ¥

11 - "post™: {

12 "href": "http://localhost:8888/posts/1"

13 T

14 +

15 }

16 1

17 s

1B~| "_links": {

197 "self": {

20 "href": "http://localhost:B8B88/posts/search/findByBodyContaining?keyword=nulla"
21 }

22 }

2z |1

Searching posts by keyword in body: curl -x GET
"http://localhost:8080/posts/search/findByBodyContaining?keyword=us"

Status: 200 OK

Time: 60 ms

Time: 44 ms

POST v http:/flocalhost:B080/posts/

5 (1) Body @ Pre

form-data xwww-form-urlencoded '® raw binary

JSON (application/json)

1 |i{rtitle: "Title #1", "body": "This is my post.” }|

Body
Pretoy Ra JS0ON e §
1=l
2 " mtitle": "Title #1",
3 "body": "This is my post.”,
4+| " links": {
= "self"i {
6 "href": "http://localhost:8888/posts/5"
7 bs
8~ "post":
L) "href™: "http://localhost:8888/posts/5"
18 }
11 }
257

Creating a new post: curl -X POST -H "Content-Type:

"Title #1", "body": "This is my post." }' "http:

params “ save

Generate Code

Status: 201 Created Time: 1210 ms

O Q

application/json" -d '{"title":
localhost:8080/posts/"

DELETE

hitp:/flocalhost:8080/posts/1

Headers Bady

Body Co

=

Pretty Raw HTML

Deleting a post: curl -x DELETE "http:

localhost:8080/posts

Pﬁ i “ Sa =

Generate Code

Bulk Edit Presets W

Status: 204 No Content Time: 207 ms
™

]

http://localhost:8080/posts/
http://localhost:8080/posts/1

PATCH http://localhost8080/posts/S Params Save

(1) Body @ € st Sc ; Generate Code
form-data s*-www-form-urlencoded ® raw binary JSON (application/json

Tl rtitle”: Title #273

Body : ers (9) Status: 200 0K Time: 133 ms
Pretty : cvie JSON =
1-l
2 le": "Title #2",
3 “This is my post.",
Lvl 2]
5~ Sef
6 "href": "http://localhost:B@88/posts/5"
7 1
8~ "post™: {
9 "href”: "htip://localhost:8888/posts/5"
18 }
1 }
12 |}

Updating an existing post: curl -x PATCH -d '{"title": "Title #2" }'
"http://localhost:8080/posts/5"

Let’'s add some validation to make it a bit more realistic. Update the Post entity with the

eNotNull annotation on both title and body fields:
package com.kaviddiss.domain;

import javax.persistence.Entity;

import javax.persistence.GeneratedvValue;
import javax.persistence.Ild;

import javax.validation.constraints.NotNull;

import java.io.Serializable;

@Entity
public class Post implements Serializable ({
@Id
@GeneratedvValue
private Long id;
@NotNull
private String title;
@NotNull
private String body;

public Long getId() {
return id;

public void setId(Long id) {

this.id = id;

public String getTitle() {
return title;

public void setTitle(String title) {
this.title = title;

public String getBody () {
return body;

public void setBody (String body) {
this.body = body;

Now let’'s see what happens if we don’t provide any data (after rebuilding/restarting the
application):

POST hup:/flocalhosc8080/posts/ Params Save

(1) Body @
form-data xwww-form-urlencoded ® raw binary JSON (application/json)
| €5
Body (&) Status: 500 ir Server Error e: 91 ms
Pretty J50N =
- |

"timestamp”: 1463623302568,

Post] during persist time for groups [javax.validation.groups.Default,
nterpolatedMessage="may not be null', propertyPath=title, rootBean(lass
ation.constraints.NotNull

‘may not be null', propertyPath=bedy, rootBeanClass=class com.kaviddiss.domain

JanList of ¢ i
=class com.ka ssageTemplate="4{
.message} ' }\n\tConstraintViolationImpl{interpclated!
.Post, messageTemplate='{javax.validation.constraints.Nothull.message}" }in]",
"path": "/posts/"

5 s

Creating a post without any data: cur1 -x POST -d '{}' "http://localhost:8080/posts/"

When we tried to persist data using Spring Data, Spring automatically picks up the enotNu11
annotations and validates the entity object against them

http://localhost:8080/posts/

Step #6 - Securing the application

In the previous section we covered how to create REST services that access a SQL database,
in this section we’ll look into securing those REST services with the help of the Spring Security
framework.

What is Spring Security?
Spring Security is a Spring framework for authentication and authorization

We’ll configure Spring Security to restrict access to the application by requiring Basic
Authentication on all HTTP requests and to only authenticate requests where
username/password is user/pwd123.

What is Basic Authentication?
Basic Authentication is the simplest type of authentication where the username and
password is provided in the header of every HTTP request

Update the pom.xml by including the spring-boot-starter-security dependency (around line
44):
<dependency>
<groupld>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

Create the com.kaviddiss.config package and add a securityconfig class in it:
package com.kaviddiss.config;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.context.annotation.Configuration;

import
org.springframework.security.config.annotation.authentication.builders.AuthenticationM
anagerBuilder;

import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import
org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurer

Adapter;

@Configuration

@EnableWebSecurity

public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override

protected void configure (HttpSecurity http) throws Exception {
http.authorizeRequests () // allows restricting access

.anyRequest () . fullyAuthenticated() // any HTTP request has to be authenticated

.and ()
.httpBasic() // authentication has to be done via HTTP Basic Auth mechanisn
.and ()
.csrf () .disable() // disable CSRF which is enabled by default
7
}
@Autowired

public void configureGlobal (AuthenticationManagerBuilder auth) throws Exception {
auth

.inMemoryAuthentication () // store valid creder

.withUser ("user") .password ("pwdl123")
user/pwdl23

.roles ("USER") // and that user will have USER role

The econfiguration annotation tells Spring that this is a configuration class used in the Spring
application and the ¢rnabiewebsecurity annotation tells Spring to initialize Spring Security on
startup time.

To be able to configure Spring Security, the securityconfig class needs to extend the
WebSecurityConfigurerAdapter(ﬂaSS andinuﬂernentthe configure () and configureGlobal ()
methods.

The configure () method tells Spring Security to require authentication on any HTTP request to
the application using HTTP Basic Auth and disable protection for Cross-site request forgery
(CSRE), though just for the sake of simplifying testing.

What is Cross-site request forgery?

“Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute
unwanted actions on a web application in which they're currently authenticated”

- https://www.owasp.org/index.php/Cross-Site_ Request_Forgery (CSRF)

The configureGlobal () method tells Spring Security to only allow authentication for the
hard-coded user/pwd123 credentials stored in memory, and the logged in user will be granted
with the USER role.

Note that in a production environment username, password and roles are most likely stored in
an LDAP server or a database, but definitely not in-memory.

After rebuilding/restarting the application, let’s test these changes:

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

GET v

Autharization

hrp:fflocalhosu8080/posts

= (1)

Params

Generate Code

Status: 401 Unauthorized Time: 77 ms

Type No Auth
Body c He
Pretty Raw Previev JSON =0
1-k
2 "timestamp”: 1463626528421,
| "status": 401,
4 "error”: "Unauthorized”,
5 "message": "Full authentication is required to access this resource”,
6 _"path": " /posts”
701

Unauthenticated request: curl -X GET "http:

GET v

Authorization @

Type

Username

Password

Body Coockies

Pretty Raw

1+l

http://localhost8080/posts

- (1) Pr

Basic Auth

password

o Show Password

2+ "_embedded": {
> "posts™: [

g~
5
6
T

{

localhost:8080/posts™

Params

The authorization header will be generated and
added as a custom header

Save helper data to request

: "Lorem ipsum dolor sit amet, consectetur adipiscing elit",
"Fusce urna nulla, fringilla lacinia euismod eget, vestibulum id metus.",

[Q

Lt

6

Generate Code

Clear Update Request

Status: 200 0K Time: 50 ms

0OQ

Authorized request: curl -X GET -H "Authorization: Basic dXNlcjpwYXNzd29yZA=="
"http://localhost:8080/posts"

http://localhost:8080/posts

Conclusion

Congratulation on completing this tutorial! Now you mastered the basics of Spring.

If you’re wondering where to go next, you'll find more tutorials on Spring at
http://kaviddiss.com/learn-spring/.

In case you have any questions on this tutorial or on Spring in general, leave a message at
http://kaviddiss.com/contact/. I'd also welcome any feedback on how to improve this tutorial.

Thanks!

David from http://kaviddiss.com

http://kaviddiss.com/learn-spring/
http://kaviddiss.com/contact/
http://kaviddiss.com/

